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J .  Phys. A :  Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

The effects of detuning on the quantum theory of an 
inhomogeneously broadened laser 

D. 0. RISKAT and S. STENHOLM1 
University of Helsinki Research Institute for Theoretical Physics, 
Siltavuorenpenger 20 B, Helsinki 17, Finland 
MS.  receiced 37d Noz'embei, 1969 

Abstract. The quantum theory of a laser developed by Scully and Lamb is 
reformulated to include the effects of atomic motipn and detuning. The  equa- 
tions are solved to fourth order in the atom-field coupling constant. An 
approximate treatment of the mode structure is shown to reproduce the results 
of Lamb's semi-classical theory in the Doppler limit. In  addition the photon 
distribution may be studied as a function of the detuning. The width of the 
photon distribution is found to increase monotonically with increasing detuning. 

1. Introduction 
In  a previous paper (Riska and Stenholm 1970) we generalized the quantum 

theory for a laser developed by Scully and Lamb (1967) to the case where the active 
atoms are moving. The  treatment was, however, limited to the case of resonance 
between the lasing cavity mode and the atomic transition sustaining the oscillations. 
We found that the atomic motion broadened the photon distribution as compared 
with the case of stationary atoms. In  both our paper and that of Scully and Lamb 
the atoms are supposed to see only an average electromagnetic field. This assumption 
is more reasonable in the case of moving atoms, when an excited atom travels over 
several wavelengths of the electromagnetic field during its lifetime. In  a letter (Riska 
and Stenholm 1969) we have shown that taking into account the spatial structure of 
the cavity mode in the quantum theory of Scully and Lamb we obtain an intensity 
exactly equal to the one given by semi-classical theory without atomic motion (Lamb 
1964). 

The  effects of the atomic velocity distribution are most easily seen experimentally 
when the laser is detuned off resonance. An atom moving through the standing wave 
field sees two Doppler-shifted frequency components. When one of these is in reson- 
ance with the atomic transition a strong interaction takes place between the field and 
the atom. Atoms with Doppler shifts that compensate the detuning saturate strongly. 
The  effect is called hole burning in the population inversion (Bennett 1962). This 
paper includes the effects of atomic motion and detuning in a model by Scully and 
Lamb (1967). The  exact expressions are given but in order to obtain analytical 
results we perform a perturbation expansion in the field intensity. A certain neglect 
of detailed mode structure is introduced and the expression for the intensity given by 
Lamb (1964) is obtained. I n  addition we obtain the photon distribution as a function 
of detuning. 

I n  $ 2  of the present paper we describe the laser model and in 9 3 we obtain the 
equation of motion for the density matrix of the radiation field coupled to the atoms. 
The photon distribution and the intensity are calculated in $ 4 and the results are 
discussed in $ 5 .  

t Present address : Nordita, Copenhagen, Denmark. 
$ Present address : Technical University of Helsinki, Otaniemi, Finland. 
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2. The model 
The  quantum theory of the laser, developed by Scully and Lamb (1967), is based 

on the same ideas as the semi-classical theory of Lamb (1964). The  laser is assumed 
to consist of a highly selective optical cavity of length L. The pumping mechanism 
is described as injection of active two-level atoms in the upper level la}  of the pair 
la) ,  Ib) at random times with an average rate r,. The intensity of the electromagnetic 
field in the laser cavity is assumed large enough to permit the atoms to interact with 
the field independently of each other until they decay to lower levels I C )  and Id)  
with rates ya  and yb respectively. The  loss mechanism is taken into account in a 
similar way by atoms introduced with a rate ra in the lower level of two very broad 
levels l a )  and I P ) ,  which rapidly decay to levels I y )  and IS )  with rates ya and yo. 
Because of the rapid decay of the non-resonant states, the loss mechanism can be 
treated as a linear process. 

We now generalize this model to the case of moving atoms. We assume that, at 
random times, atoms in the state l a )  are injected into the cavity at the point x with 
the velocity U at a ratet h,(z, U). We treat the cavity as one-dimensional, neglecting 
the transverse variation of the electromagnetic mode (Lamb 1964). We assume the 
injection rate h,(z, z) to vary only slightly over the cavity length and neglect its 
z-dependence. Assuming a Maxwellian velocity distribution for the injected atoms, 
we can then write ha(x ,  E )  as 

where U is the width of the velocity distribution and r ,  is the total injection rate. 

3. The equation of motion for the density matrix 
The  Hamiltonian hH of the interaction between an injected atom with a level 

difference kw = E ,  - E ,  and a cavity mode of frequency 62 is (in the dipole approxi- 
mation) 

Here a+ and a are the photon creation and annihilation operators and U+ and U are 
the raising and lowering operators between the states la), [ b ) .  The  population in- 
version operator U” is defined as the commutator of U +  and U. The factor 1/2  is 
introduced in order to have the same coupling constant g as Scully and Lamb (see 
Riska and Stenholm 1969). The  factor sin(Kx(t)} arises because of the standing-wave 
structure of the cavity mode; the wave number K is defined as Q/c and x ( t )  gives the 
instantaneous position of the atom in the cavity at time t. The atom injected at the 
point xo at time t o  with velocity v is at the later time t at (neglecting the effects of 
atomic collisions) 

H = Qa+a+ (Eb /A)  + i w ( l +  U”) +g%/2 sin(Kz(t))(a+u+aa+). (2) 

x ( t )  = x,+z.(t-tt,). (3) 

Pan,Bn‘ = IP IPn’ > (4) 

The density matrix of the coupled system of the field and the atom injected at t o  
has the elements 

where [E, n }  is a state with n photons and the atom in the state 1 a ) ,  being one of: 

p This means that we consider an ensemble of atoms introduced at z with a distribution 
of velocities-cf. Riska and Stenholm (1 970). 
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la), Ib}, I C )  or Id). In  order to determine the photon distribution we have to obtain 
the equation of motion for the diagonal elements p n n ,  where the atomic variables of 
(4) have been traced away. The  equations are calculated by the method of Scully 
and Lamb (1967) with the decay treated in a Wigner-Weisskopf approximation. We 
obtain 

with 

and 

In addition we obtain 
t o + T  

Pcn ,cn ( to+  T )  = Y a  1 dt’Pun,an(t’) (70) 

P d n + l , d n + l ( t O +  T ,  = Y b  1 dt’Pbn+l,bn+l(t’)* (7b) 

t o  

t o +  T 

t o  

The initial condition is pan ,an( to )  = pnn( to )  and all other matrix elements equal to 
zero at to. 

I n  order to construct a coarse-grained time derivative for the density matrix of 
the radiation field we have to determine the change in pnn due to the injection of one 
active atom. From equations ( 5 )  it follows that the elements p a n , a n  and P b n , b n  go to 
zero exponentially with time because of spontaneous decad  to the lower levels IC} 
and Id), and consequently we can write 

+nn = Pcn ,cn ( to  + T )  +Pdn,cin(tO + T )  - ~ n n ( t o )  (8) 
provided T $ y U b - l .  Even if equations ( 5 )  can be solved exactly by matrix methods 
and the expressions (7) in principle are known after one integration, the result has 
not been obtained as an analytical expression for 6 p n n  because of the complicated 
structure of pan ,an  and P b n , b n .  ’CVe therefore resort to a perturbation expansion of the 
solution. 

The  general term of the iterative solution of equation ( 5 )  may be written down 
conveniently in matrix notation (see Appendix l), but for the calculation of the terms, 
diagonal in the field, to fourth order, the straightforward method used by Lamb 
(1964) for solving a similar system of equations is more practical. 

The  matrix elements diagonal in n are to zeroth, second and fourth order: 

t The  exact solution of equations ( 5 )  will contain a factor exp( - yabt)-see Appendix 1. 
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From the structure of equations (9) we see that in order to include saturation effects 
the fourth-order terms cannot be neglected. We can now use equations (7), (8) and 
(9) to write the change in the density matrix as 

T T 

(10) 
(2) ( 4 )  

+ Y b /  dTPbn,bn(T)+Yb d T P b n . b n  (T)-pnn(tfl). 
0 0 

As the density matrix elements go to zero exponentially with time we may replace 
the upper limit of integration T by infinity. Performing the integrations in equa- 
tion (10) we split V(t) into its exponential terms 

g d 2  PYt) = ---(~+1)~'~ exp[iK{x,+z.(t-tt,)}]+c.c. 
2i 

All integrals are then reduced to the form 

which equals (assuming convergence at the upper limit-see Appendix 2) 

In  order to find the macroscopic change in pnn  due to the atoms introduced during 
a time At we have to calculate 

L 

Apnn = At dv 1 dz h,(x, 2.) +,,. (12) 
-m 0 

Dividing (12) by At we get a coarse-grained time derivative of p n n ( t ) .  
I n  calculating the fourth-order terms from equations (9e) and (Sf), we replace 

the second-order terms by their spatial averages over the cavity (i.e. we neglect 
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terms containing the factors exp( i i2Kzo) which should be a good approximation 
for moving atoms. The  approximation is not unavoidable (see Appendix 3) but facili- 
tates the analytical work and turns out to agree with earlier results in the Doppler 
limit. By performing the t and xo integrations we obtain 

(13) 

The velocity integrals can be performed approximately in the Doppler limit 
Ku 9 y a , y b  (Appendix 4). By adding h e a r  loss terms as in our previous paper 
(Riska and Stenholm 1970)' we get the equation of motion for p n n  

- CnPnn + C(n + 1)Pn + 1. n + I 

with A, B and C defined in accordance with Riska and Stenholm (1970) as 

For the case of resonance ( A  = 0) equation (14) may be compared with the equation 
derived earlier (Riska and Stenholm 1970) 

+ C(n + 1)Pn + 1, n + I (16) 

Expanding the square roots in (16) to first order in n we find the equation (14) with 
a = 0. 

4. Steady-state conditions 
The steady-state solution Pl ln  = 0 of equation (14) is obtained when 
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from which we easily find the solution 
- nA2 v B  

P n n  = ( ~ ) n e x P ( ~ ~ ) P f J O  v = o  ri [l- --{1+y,b2(y,bZ+42)-1}] 4 a  (18) 

where p o o  is the normalization constant. 

the amplification factor A is below the value 
The  photon distribution is a monotonically decreasing function of n as long as 

A = exp iI&) -- C (19) 

which is the threshold condition for the laser with detuning. This agrees with the 
semi-classical result (Lamb 1964) and reduces to our earlier result A = C when 
A = 0. The  value of the amplification A needed to reach the threshold (19) increases 
exponentially with detuning. When A > exp(A2/K2u2)C, equation (18) implies 
that p n n  increases with increasing n up to a peak value f i ,  after which it decreases 
towards zero. According to (18) p n n  becomes negative for very large values of n, 
which is physically impossible. This is a result of our approximation which includes 
only fourth-order terms. The  photon distribution (18) should not be used for 
n B f i  (the same situation has also been noted by Scully and Lamb 1967, § 4). The 
value 7i can be found from the condition 

Setting A = 0 and remembering that (21) is valid only when A 2: C, we obtain agree- 
ment to lowest order in ( (A/C)-  1) with the result derived by Riska and Stenholm 
(1970) 

As long as the laser is not too far above threshold, the result (21) is useful. I t  also 
agrees completely with the result derived by Lamb (1964) in the semi-classical theory. 
The  dimensionless intensity parameter (B/A)7i has been proved to equal the dimen- 
sionless intensity parameter 1 in the semi-classical theory (Riska and Stenholm 1969). 

I n  figure 1 we plot the photon distribution for four values of the detuning. 
Increasing the detuning from A = 0 first raises the peak of the distribution to higher 
photon numbers, i.e. larger intensities. A further increase in detuning leads to a 
drop in average photon number and the curve for A = 4y,b shows the approach to 
the black-body distribution which prevails when the laser is detuned so far that it 
stops oscillating. The  linewidth is a monotonically increasing function of the detuning. 
An approximate expression for the width of the photon distribution can be obtained 
in the following way (as in Riska and Stenholm 1970): from (18) we have 

- kh 
P Z + k , z + k  = ($)kexP(-)PEx 
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The halfwidth is obtained if one sets P z + k , z + k  = which with (21) leads to 

Assuming the last term to be small we expand and use (21) to obtain 

?i 

( A / C )  exp( - A2/K2u2) - 1' 
k2 = 

In  figure 2 we plot the linewidth given by equation (25) as a function of detuning 
for A/C = 1.2 and compare it with the values obtained from the photon distributions 
in figure 1. We see that equation (25) shows the correct trend of the linewidth even 
if the actual values are too low.? 

n 

Figure 1. The photon distribution of equation (18) for four values of the 
detuning A = 0,  y o b )  3 y a b j  4 ~ ~ : .  The parameter KU is chosen to be lOy,, 
(the Doppler limit). The amplification factor A/C = 1.2 and the saturation 

parameter B/A = 0.005. 

In  figure 3 we compare the approximate photon distribution at resonance as 
given by equation (18) with the non-perturbative result obtained earlier (Riska and 
Stenholm 1970). At AIC = 1-2 we see that the perturbation approach gives an 
intensity, approximately 30% too small and a too narrow line. This is understandable 
as the perturbation theory neglects all processes where an injected atom interacts 
more than four times with the radiation field before its decay. For smaller values of 
AIC the agreement is better. 

5.  Discussion 
The quantum theory of an inhomogeneously broadened laser is generalized to the 

case of a laser with detuning. In  order to enable us to perform the calculations analyti- 
cally we use a fourth-order perturbation expansion in the atom-radiation coupling 
constant. The standing-wave structure of the cavity mode is included into the formu- 
lation of the theory, but in the actual calculation of the nonlinear terms the mode 
structure is taken into account approximately only. This had been found to be a good 

f We take this opportunity to correct an error in Riska and Stenholm (1970)-equation (59) 
should read: uz/usL2 = 3/2 > 1. 
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approximation for the case of resonance between the atoms and the cavity. The ex- 
pression obtained for the electromagnetic field intensity agrees with the result given 
by Lamb (1964) in the Doppler limit. This may be seen as a justification for our 
approximation method, and our approach makes it possible to consider the exact per- 
turbation expression if need be. This will certainly be the case when y a b  N Ku. The  
exact fourth-order terms with the mode structure included are given in Appendix 3. 

0 

I I 

/ IC I / \  

n 

Figure 2. The approximate Figure 3. The exact photon 
values of the width K 2 / i i  (full distribution at resonance I 
curve, calculated from equa- compared with the approximate 
tion (25)) are compared with one I1 given in this paper 
those found from the photon (equation (18)) when we set 
distribution (points taken from A = 0. The parameters 
the distributions in figure 1) for 
varying detuning. AIC = 1.2 

and BIA = 0.005. 

AIC = 1.2 and BIA = 0.005. 

Corrections to the expression (21) may readily be obtained from these. No specific 
quantum effects are to be expected in the intensity, and in the Doppler limit Ku 9 y a b  
the quantitative changes introduced are hardly experimentally observable. I n  
addition to the semi-classical expression for the intensity, the quantum theory gives 
the photon distribution in the laser. The  width of this is found to increase with in- 
creasing detuning, finally to loose its meaning at the values of the detuning where the 
oscillations stop and the distribution goes over into a black-body one. 

Finally our formulation enables one to obtain the results for any intensity from a 
straightforward evaluation of the solution to equations ( 5 ) .  This can be done numeri- 
cally in the 4 x 4 matrix formulation of Appendix 1. We have, however, not been 
interested in obtaining the most general solution of the problem, but we have rather 
wanted to show the connections between the quantum theory and the semi-classical 
theory and to elucidate their differences. More detailed numerical work may pre- 
ferably be performed in connection with the analysis of actual measurements. 
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Appendix 1 
The equations (5) can be written in matrix form as 

B = P + Q ( t ) ) P  
where we have defined 

( A l . 1 )  

(A1 2) 

0 iV(t) -iV(t) 0 
i V( t )  0 0 - iV(t) 

-iV(t) 0 0 i V( t )  
0 -iV(t) iV(t) 0 

Q(t> = 

(Al .3)  

Because of the complicated structure of equation (,41.3) it proves to be advantageous 
to use a perturbation expansion of the solution. For this we introduce an 'interaction 
representation' by writing p = exp{P(t- to )}p ' ,  which in the usual way gives 

t 

p'(t) = p'(to)+ 1 dtl Q'(tl)P'(tl) 

Ptt) = exp{P(t- t o ) )  P(t0) + j dtl exp{P(t - tl)}Q(tl) exp.IW, - tO))P(tO) 

+ f a  dtl s:' dt, exp{P(t - tl))Q(tl) exp(P(t1 - tz))Q(tz) 

(Al.4) 
t o  with 

Iterating the equation (A1.4) and going back to p ( t )  we find 

Q'(t) = exp{-P(t-t,))Q(t) exp{P(t-to)}. (Al .5 )  

t 

t a  

t o  

x exp{P(t, - to))p(to) + . .; . (A1 -6)  
The zeroth order describes spontaneous decay without interaction with the laser 
field, the first-order term describes emission of a photon before decay and so forth. 
In  this paper we include terms up to fourth order. 

Appendix 2 
The calculations of 9 3 lead to integrals of the type 

(A2.1) 

where n = 2 and 4. By the substitution 

(A2.2) 
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we write (A2.1) in the form 

545 

Repeating this process we can write the integral 

(A2.3) 

(A2.4)  

Provided that for all K 6 n, Re E;",= scm < 0 we get the result 

-1 
I = (-l)"(scn)-~(tln+"n-l)-l ... ( $ K.) . (A2.5) 

m = l  

Appendix 3 
The calculations in the text neglect the detailed mode structure in p(') when 

introducing this into the calculation of P ' ~ ) .  An exact calculation of the term needed 
in Apnn gives @ 

i," di-2- 1," dzp,,,,, (4) = g4(% -___ + I)' [ - %ab3 { 1 + -  1 I' 
16y,' YaYb  Yab'+(KV+A)' yab'+(KV-A)'\ 

8KVy,b(KV +A)-2Yb(Yab2-(KV +A)') - 
(yb2 + 4K2V2){y,b2 -I- (KV + A)'}' 

- __- 

8K8y,b(Ke-A)- 2yb(y,b2 - (KV -A)'} 
(yb' $4K2V2){y,b2 + (K'Z'-A)')' 

- 

8(KV)2yab - 2Yb{Yab2 - (K2v2 - -2  
(yb2 f 4K2V2)(y,b2 + (KV + A)'}{yab2 + (KV - A)'} 

8KVy,b(KV f A) - 2y,(y,b2 - (KV + A)'} - 
(yn' + 4K22.'){y,b2 + (KV +A)')' 

8KVy,b(KV-A) - Z Y n ( Y a b 2 -  (KV- A)') - 
(7,' + 4K2~2) )y ,b2  + (Ku - A)'}' 

8(KV)'y,b - 27',(7',b2 - (K2V2 -A')} 
-2  (A3.1) 

Our approximation eliminates all terms of (A3.1) but the first one in braces. This 
leads to considerable simplification and is shown to be equivalent to the results by 
Lamb (1964) and Riska and Stenholm (1970) in the Doppler limit, Ku 9 y ,  Correc- 
tions may easily be calculated from (A3.1). 

(7,' + 4K22.')(y,,' (KV 4)'}(y,b2 (KV -A)'} 
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Appendix 4 

calculated : 
In  the Doppler limit KZL % y the velocity integrals in equation (13) are easily 

exp( - c2/u2)  exp( - A2/K2u2) + 1 
N - 1' dx-- 

KU \in- - - 3 3  y a b 2 + X 2  

(A4.1) 

(A4.2) 

Integrals over the product of two Lorentzians can be calculated using the residue 
theorem : 
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